Backpaper Exam - Optimization B. Math II

31 January, 2022

- (i) Duration of the exam is 3 hours.
- (ii) The maximum number of points you can score in the exam is 80 (the final score will be based on the rules of backpaper exam.)
- (iii) You are not allowed to consult any notes or external sources for the exam.

Name: _

Roll Number: _

1. Let

$$A = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \end{bmatrix}, \vec{b} = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}.$$

- (a) (5 points) Compute the singular value decomposition of A.
- (b) (10 points) Find a vector $\vec{x} \in \mathbb{R}^4$ which minimizes $||A\vec{x} \vec{b}||_2$ (with justification).

Total for Question 1: 15

2. Consider the following linear programming problem:

Minimize
$$x_1 + \alpha x_2 + x_3$$

subject to

$$x_1 + 2x_2 - 2x_3 \ge 0$$

-x_1 + x_3 \ge 0
x_1, x_2, x_3 \ge 0.

- (a) (5 points) Solve the above LPP for $\alpha = -1$.
- (b) (10 points) Which values of α lead to an unbounded LPP?

Total for Question 2: 15

3. The following tableaux corresponds to an *optimal basis* for a linear programming problem, where x_1, x_2, x_3 are the original primal variables, and s_1 and s_2 are the slack variables corresponding to the two constraints.

	x_1	x_2	x_3	s_1	s_2
35	0	2	0	3	2
$\frac{5}{2}$	0	$\frac{1}{4}$	1	$\frac{1}{2}$	0
$\frac{5}{2}$	1	$-\frac{1}{2}$	0	$-\frac{1}{6}$	$\frac{1}{3}$

- (a) (10 points) Deduce the original linear program with justification.
- (b) (4 points) Write the dual of the original program.
- (c) (6 points) Explain why the reduced costs of the slack variables in the tableau are equal to the negative of values of the dual optimal variables for the corresponding constraints.
- (d) (4 points) From the given tableax, determine B^{-1} , where B is the given optimal basis.
- (e) (6 points) Consider adding a new variable x_4 to the original problem with corresponding column $\begin{bmatrix} 1\\1 \end{bmatrix}$ in the constraint matrix, and (unknown) cost coefficient c_4 . Calculate the (expanded) tableau corresponding to B, the given basis, by calculating the entries for the new column corresponding to x_4 (the reduced cost in row zero must be expressed as a function of c_4 , the unknown cost coefficient).
- (f) (5 points) Determine for what values of c_4 the current basis B remains optimal.

Total for Question 3: 35

4. For non-zero vectors $\vec{a}_i \in \mathbb{R}^n, b_i \in \mathbb{R} \ (1 \le i \le m)$, consider the piecewise-linear minimization problem,

$$\min_{\vec{x} \in \mathbb{R}^n} \max_{1 \le i \le m} (\langle \vec{a}_i, \vec{x} \rangle + b_i).$$

Let A be the $m \times n$ matrix with rows \vec{a}_i^T , and \vec{b} be the vector in \mathbb{R}^m with components b_1, \ldots, b_m .

(a) (5 points) Derive a dual problem, based on the Lagrange dual of the equivalent problem

 $\min_{\vec{x} \in \mathbb{R}^n, \vec{y} \in \mathbb{R}^m} \max_{1 \leq i \leq m} y_i$

subject to

 $A\vec{x} + \vec{b} = \vec{y}.$

- (b) (5 points) Let α^* be the optimal value for the above optimization problem. Let $\vec{p} \in \mathbb{R}^m$ be a probability vector, that is, $\vec{p} \ge \vec{0}$ and $\sum_{i=1}^m p_i = 1$, such that $\vec{p}^T A = \vec{0}^T$. Show that $\langle \vec{p}, \vec{b} \rangle \le \alpha^*$.
- (c) (5 points) In order to find the best possible lower bound of the form described in part (b), we form the linear programming problem

$$\underset{\vec{p} \in \mathbb{R}^m}{\operatorname{maximize}} \langle \vec{p}, \vec{b} \rangle$$

subject to

$$\vec{p}^T A = \vec{0}^T, \ \sum_{i=1}^m p_i = 1, \vec{p} \ge \vec{0}.$$

Show that the optimal value of this problem is equal to α^* .

Total for Question 4: 15